We characterize the partial differential operators P(D) admitting a continuous linear right inverse in the space of Fourier hyperfunctions by means of a dual (Ω̅)-type estimate valid for the bounded holomorphic functions on the characteristic variety near . The estimate can be transferred to plurisubharmonic functions and is equivalent to a uniform (local) Phragmén-Lindelöf-type condition.
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-sm183-3-5,
author = {Michael Langenbruch},
title = {Right inverses for partial differential operators on Fourier hyperfunctions},
journal = {Studia Mathematica},
volume = {178},
year = {2007},
pages = {273-299},
zbl = {1145.35058},
language = {en},
url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm183-3-5}
}
Michael Langenbruch. Right inverses for partial differential operators on Fourier hyperfunctions. Studia Mathematica, Tome 178 (2007) pp. 273-299. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm183-3-5/