We characterize the partial differential operators P(D) admitting a continuous linear right inverse in the space of Fourier hyperfunctions by means of a dual (Ω̅)-type estimate valid for the bounded holomorphic functions on the characteristic variety near . The estimate can be transferred to plurisubharmonic functions and is equivalent to a uniform (local) Phragmén-Lindelöf-type condition.
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-sm183-3-5, author = {Michael Langenbruch}, title = {Right inverses for partial differential operators on Fourier hyperfunctions}, journal = {Studia Mathematica}, volume = {178}, year = {2007}, pages = {273-299}, zbl = {1145.35058}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm183-3-5} }
Michael Langenbruch. Right inverses for partial differential operators on Fourier hyperfunctions. Studia Mathematica, Tome 178 (2007) pp. 273-299. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm183-3-5/