The trace space of consists of those functions on ℝⁿ that can be extended to functions of (as in the fixed-exponent case). Under the assumption that p is globally log-Hölder continuous, we show that the trace space depends only on the values of p on the boundary. In our main result we show how to define an intrinsic norm for the trace space in terms of a sharp-type operator.
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-sm183-2-3, author = {Lars Diening and Peter H\"ast\"o}, title = {Variable exponent trace spaces}, journal = {Studia Mathematica}, volume = {178}, year = {2007}, pages = {127-141}, zbl = {1134.46016}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm183-2-3} }
Lars Diening; Peter Hästö. Variable exponent trace spaces. Studia Mathematica, Tome 178 (2007) pp. 127-141. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm183-2-3/