We deal with the Hardy-Lorentz spaces where 0 < p ≤ 1, 0 < q ≤ ∞. We discuss the atomic decomposition of the elements in these spaces, their interpolation properties, and the behavior of singular integrals and other operators acting on them.
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-sm182-3-7,
author = {Wael Abu-Shammala and Alberto Torchinsky},
title = {The Hardy-Lorentz spaces $H^{p,q}(Rn)$
},
journal = {Studia Mathematica},
volume = {178},
year = {2007},
pages = {283-294},
zbl = {1129.42006},
language = {en},
url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm182-3-7}
}
Wael Abu-Shammala; Alberto Torchinsky. The Hardy-Lorentz spaces $H^{p,q}(ℝⁿ)$
. Studia Mathematica, Tome 178 (2007) pp. 283-294. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm182-3-7/