We deal with the Hardy-Lorentz spaces where 0 < p ≤ 1, 0 < q ≤ ∞. We discuss the atomic decomposition of the elements in these spaces, their interpolation properties, and the behavior of singular integrals and other operators acting on them.
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-sm182-3-7, author = {Wael Abu-Shammala and Alberto Torchinsky}, title = {The Hardy-Lorentz spaces $H^{p,q}(Rn)$ }, journal = {Studia Mathematica}, volume = {178}, year = {2007}, pages = {283-294}, zbl = {1129.42006}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm182-3-7} }
Wael Abu-Shammala; Alberto Torchinsky. The Hardy-Lorentz spaces $H^{p,q}(ℝⁿ)$ . Studia Mathematica, Tome 178 (2007) pp. 283-294. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm182-3-7/