We study if the combinatorial entropy of a finite cover can be computed using finite partitions finer than the cover. This relates to an unsolved question in [R] for open covers. We explicitly compute the topological entropy of a fixed clopen cover showing that it is smaller than the infimum of the topological entropy of all finer clopen partitions.
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-sm182-3-6, author = {Pierre-Paul Romagnoli}, title = {A remark on the topological entropies of covers and partitions}, journal = {Studia Mathematica}, volume = {178}, year = {2007}, pages = {273-281}, zbl = {1123.37009}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm182-3-6} }
Pierre-Paul Romagnoli. A remark on the topological entropies of covers and partitions. Studia Mathematica, Tome 178 (2007) pp. 273-281. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm182-3-6/