A remark on the topological entropies of covers and partitions
Pierre-Paul Romagnoli
Studia Mathematica, Tome 178 (2007), p. 273-281 / Harvested from The Polish Digital Mathematics Library

We study if the combinatorial entropy of a finite cover can be computed using finite partitions finer than the cover. This relates to an unsolved question in [R] for open covers. We explicitly compute the topological entropy of a fixed clopen cover showing that it is smaller than the infimum of the topological entropy of all finer clopen partitions.

Publié le : 2007-01-01
EUDML-ID : urn:eudml:doc:285114
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-sm182-3-6,
     author = {Pierre-Paul Romagnoli},
     title = {A remark on the topological entropies of covers and partitions},
     journal = {Studia Mathematica},
     volume = {178},
     year = {2007},
     pages = {273-281},
     zbl = {1123.37009},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm182-3-6}
}
Pierre-Paul Romagnoli. A remark on the topological entropies of covers and partitions. Studia Mathematica, Tome 178 (2007) pp. 273-281. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm182-3-6/