On the supremum of random Dirichlet polynomials
Mikhail Lifshits ; Michel Weber
Studia Mathematica, Tome 178 (2007), p. 41-65 / Harvested from The Polish Digital Mathematics Library

We study the supremum of some random Dirichlet polynomials DN(t)=n=2Nεdn-σ-it, where (εₙ) is a sequence of independent Rademacher random variables, the weights (dₙ) are multiplicative and 0 ≤ σ < 1/2. Particular attention is given to the polynomials nτεn-σ-it, τ=2nN:P(n)pτ, P⁺(n) being the largest prime divisor of n. We obtain sharp upper and lower bounds for the supremum expectation that extend the optimal estimate of Halász-Queffélec, supt|n=2Nεn-σ-it|(N1-σ)/(logN). The proofs are entirely based on methods of stochastic processes, in particular the metric entropy method.

Publié le : 2007-01-01
EUDML-ID : urn:eudml:doc:284720
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-sm182-1-3,
     author = {Mikhail Lifshits and Michel Weber},
     title = {On the supremum of random Dirichlet polynomials},
     journal = {Studia Mathematica},
     volume = {178},
     year = {2007},
     pages = {41-65},
     zbl = {1124.30004},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm182-1-3}
}
Mikhail Lifshits; Michel Weber. On the supremum of random Dirichlet polynomials. Studia Mathematica, Tome 178 (2007) pp. 41-65. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm182-1-3/