We study the supremum of some random Dirichlet polynomials , where (εₙ) is a sequence of independent Rademacher random variables, the weights (dₙ) are multiplicative and 0 ≤ σ < 1/2. Particular attention is given to the polynomials , , P⁺(n) being the largest prime divisor of n. We obtain sharp upper and lower bounds for the supremum expectation that extend the optimal estimate of Halász-Queffélec, . The proofs are entirely based on methods of stochastic processes, in particular the metric entropy method.
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-sm182-1-3,
author = {Mikhail Lifshits and Michel Weber},
title = {On the supremum of random Dirichlet polynomials},
journal = {Studia Mathematica},
volume = {178},
year = {2007},
pages = {41-65},
zbl = {1124.30004},
language = {en},
url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm182-1-3}
}
Mikhail Lifshits; Michel Weber. On the supremum of random Dirichlet polynomials. Studia Mathematica, Tome 178 (2007) pp. 41-65. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm182-1-3/