We study the supremum of some random Dirichlet polynomials , where (εₙ) is a sequence of independent Rademacher random variables, the weights (dₙ) are multiplicative and 0 ≤ σ < 1/2. Particular attention is given to the polynomials , , P⁺(n) being the largest prime divisor of n. We obtain sharp upper and lower bounds for the supremum expectation that extend the optimal estimate of Halász-Queffélec, . The proofs are entirely based on methods of stochastic processes, in particular the metric entropy method.
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-sm182-1-3, author = {Mikhail Lifshits and Michel Weber}, title = {On the supremum of random Dirichlet polynomials}, journal = {Studia Mathematica}, volume = {178}, year = {2007}, pages = {41-65}, zbl = {1124.30004}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm182-1-3} }
Mikhail Lifshits; Michel Weber. On the supremum of random Dirichlet polynomials. Studia Mathematica, Tome 178 (2007) pp. 41-65. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm182-1-3/