Embeddings of finite-dimensional operator spaces into the second dual
Alvaro Arias ; Timur Oikhberg
Studia Mathematica, Tome 178 (2007), p. 181-198 / Harvested from The Polish Digital Mathematics Library

We show that, if a a finite-dimensional operator space E is such that X contains E C-completely isomorphically whenever X** contains E completely isometrically, then E is 215C11-completely isomorphic to Rₘ ⊕ Cₙ for some n, m ∈ ℕ ∪ 0. The converse is also true: if X** contains Rₘ ⊕ Cₙ λ-completely isomorphically, then X contains Rₘ ⊕ Cₙ (2λ + ε)-completely isomorphically for any ε > 0.

Publié le : 2007-01-01
EUDML-ID : urn:eudml:doc:284544
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-sm181-2-5,
     author = {Alvaro Arias and Timur Oikhberg},
     title = {Embeddings of finite-dimensional operator spaces into the second dual},
     journal = {Studia Mathematica},
     volume = {178},
     year = {2007},
     pages = {181-198},
     zbl = {1131.46037},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm181-2-5}
}
Alvaro Arias; Timur Oikhberg. Embeddings of finite-dimensional operator spaces into the second dual. Studia Mathematica, Tome 178 (2007) pp. 181-198. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm181-2-5/