A complete characterization of R-sets in the theory of differentiation of integrals
G. A. Karagulyan
Studia Mathematica, Tome 178 (2007), p. 17-32 / Harvested from The Polish Digital Mathematics Library

Let s be the family of open rectangles in the plane ℝ² with a side of angle s to the x-axis. We say that a set S of directions is an R-set if there exists a function f ∈ L¹(ℝ²) such that the basis s differentiates the integral of f if s ∉ S, and D̅sf(x)=limsupdiam(R)0,xRs|R|-1Rf= almost everywhere if s ∈ S. If the condition D̅sf(x)= holds on a set of positive measure (instead of a.e.) we say that S is a WR-set. It is proved that S is an R-set (resp. a WR-set) if and only if it is a Gδ (resp. a Gδσ).

Publié le : 2007-01-01
EUDML-ID : urn:eudml:doc:284928
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-sm181-1-2,
     author = {G. A. Karagulyan},
     title = {A complete characterization of R-sets in the theory of differentiation of integrals},
     journal = {Studia Mathematica},
     volume = {178},
     year = {2007},
     pages = {17-32},
     zbl = {1284.42056},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm181-1-2}
}
G. A. Karagulyan. A complete characterization of R-sets in the theory of differentiation of integrals. Studia Mathematica, Tome 178 (2007) pp. 17-32. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm181-1-2/