New fixed point free nonexpansive maps on weakly compact, convex subsets of L¹[0,1]
P. N. Dowling ; C. J. Lennard ; B. Turett
Studia Mathematica, Tome 178 (2007), p. 271-284 / Harvested from The Polish Digital Mathematics Library

We show that every subset of L¹[0,1] that contains the nontrivial intersection of an order interval and finitely many hyperplanes fails to have the fixed point property for nonexpansive mappings.

Publié le : 2007-01-01
EUDML-ID : urn:eudml:doc:284982
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-sm180-3-6,
     author = {P. N. Dowling and C. J. Lennard and B. Turett},
     title = {New fixed point free nonexpansive maps on weakly compact, convex subsets of L$^1$[0,1]},
     journal = {Studia Mathematica},
     volume = {178},
     year = {2007},
     pages = {271-284},
     zbl = {1125.47040},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm180-3-6}
}
P. N. Dowling; C. J. Lennard; B. Turett. New fixed point free nonexpansive maps on weakly compact, convex subsets of L¹[0,1]. Studia Mathematica, Tome 178 (2007) pp. 271-284. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm180-3-6/