We generalize the classical coorbit space theory developed by Feichtinger and Gröchenig to quasi-Banach spaces. As a main result we provide atomic decompositions for coorbit spaces defined with respect to quasi-Banach spaces. These atomic decompositions are used to prove fast convergence rates of best n-term approximation schemes. We apply the abstract theory to time-frequency analysis of modulation spaces , 0 < p,q ≤ ∞.
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-sm180-3-4, author = {Holger Rauhut}, title = {Coorbit space theory for quasi-Banach spaces}, journal = {Studia Mathematica}, volume = {178}, year = {2007}, pages = {237-253}, zbl = {1122.42018}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm180-3-4} }
Holger Rauhut. Coorbit space theory for quasi-Banach spaces. Studia Mathematica, Tome 178 (2007) pp. 237-253. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm180-3-4/