We study connected components of a common zero set of equivalent singular inner functions in the maximal ideal space of the Banach algebra of bounded analytic functions on the open unit disk. To study topological properties of zero sets of inner functions, we give a new type of factorization theorem for inner functions.
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-sm180-2-3, author = {Keiji Izuchi}, title = {Common zero sets of equivalent singular inner functions II}, journal = {Studia Mathematica}, volume = {178}, year = {2007}, pages = {133-142}, zbl = {1142.46023}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm180-2-3} }
Keiji Izuchi. Common zero sets of equivalent singular inner functions II. Studia Mathematica, Tome 178 (2007) pp. 133-142. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm180-2-3/