Spectral projections for the twisted Laplacian
Herbert Koch ; Fulvio Ricci
Studia Mathematica, Tome 178 (2007), p. 103-110 / Harvested from The Polish Digital Mathematics Library

Let n ≥ 1, d = 2n, and let (x,y) ∈ ℝⁿ × ℝⁿ be a generic point in ℝ²ⁿ. The twisted Laplacian L=-1/2j=1n[(xj+iyj)²+(yj-ixj)²] has the spectrum n + 2k = λ²: k a nonnegative integer. Let Pλ be the spectral projection onto the (infinite-dimensional) eigenspace. We find the optimal exponent ϱ(p) in the estimate ||Pλu||Lp(d)λϱ(p)||u||L²(d) for all p ∈ [2,∞], improving previous partial results by Ratnakumar, Rawat and Thangavelu, and by Stempak and Zienkiewicz. The expression for ϱ(p) is ϱ(p) = 1/p -1/2 if 2 ≤ p ≤ 2(d+1)/(d-1), ϱ(p) = (d-2)/2 - d/p if 2(d+1)/(d-1) ≤ p ≤ ∞.

Publié le : 2007-01-01
EUDML-ID : urn:eudml:doc:285179
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-sm180-2-1,
     author = {Herbert Koch and Fulvio Ricci},
     title = {Spectral projections for the twisted Laplacian},
     journal = {Studia Mathematica},
     volume = {178},
     year = {2007},
     pages = {103-110},
     zbl = {1120.43005},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm180-2-1}
}
Herbert Koch; Fulvio Ricci. Spectral projections for the twisted Laplacian. Studia Mathematica, Tome 178 (2007) pp. 103-110. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm180-2-1/