Let n ≥ 1, d = 2n, and let (x,y) ∈ ℝⁿ × ℝⁿ be a generic point in ℝ²ⁿ. The twisted Laplacian has the spectrum n + 2k = λ²: k a nonnegative integer. Let be the spectral projection onto the (infinite-dimensional) eigenspace. We find the optimal exponent ϱ(p) in the estimate for all p ∈ [2,∞], improving previous partial results by Ratnakumar, Rawat and Thangavelu, and by Stempak and Zienkiewicz. The expression for ϱ(p) is ϱ(p) = 1/p -1/2 if 2 ≤ p ≤ 2(d+1)/(d-1), ϱ(p) = (d-2)/2 - d/p if 2(d+1)/(d-1) ≤ p ≤ ∞.
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-sm180-2-1, author = {Herbert Koch and Fulvio Ricci}, title = {Spectral projections for the twisted Laplacian}, journal = {Studia Mathematica}, volume = {178}, year = {2007}, pages = {103-110}, zbl = {1120.43005}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm180-2-1} }
Herbert Koch; Fulvio Ricci. Spectral projections for the twisted Laplacian. Studia Mathematica, Tome 178 (2007) pp. 103-110. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm180-2-1/