Let WF⁎ be the wave front set with respect to , quasi analyticity or analyticity, and let K be the kernel of a positive operator from to ’. We prove that if ξ ≠ 0 and (x,x,ξ,-ξ) ∉ WF⁎(K), then (x,y,ξ,-η) ∉ WF⁎(K) and (y,x,η,-ξ) ∉ WF⁎(K) for any y,η. We apply this property to positive elements with respect to the weighted convolution , where is appropriate, and prove that if for every and (0,ξ) ∉ WF⁎(u), then (x,ξ) ∉ WF⁎(u) for any x.
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-sm179-1-6, author = {Joachim Toft}, title = {Wave front set for positive operators and for positive elements in non-commutative convolution algebras}, journal = {Studia Mathematica}, volume = {178}, year = {2007}, pages = {63-80}, zbl = {1110.35301}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm179-1-6} }
Joachim Toft. Wave front set for positive operators and for positive elements in non-commutative convolution algebras. Studia Mathematica, Tome 178 (2007) pp. 63-80. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm179-1-6/