Pointwise limit theorem for a class of unbounded operators in r-spaces
Ryszard Jajte
Studia Mathematica, Tome 178 (2007), p. 49-61 / Harvested from The Polish Digital Mathematics Library

We distinguish a class of unbounded operators in r, r ≥ 1, related to the self-adjoint operators in ². For these operators we prove a kind of individual ergodic theorem, replacing the classical Cesàro averages by Borel summability. The result is equivalent to a version of Gaposhkin’s criterion for the a.e. convergence of operators. In the proof, the theory of martingales and interpolation in r-spaces are applied.

Publié le : 2007-01-01
EUDML-ID : urn:eudml:doc:284832
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-sm179-1-5,
     author = {Ryszard Jajte},
     title = {Pointwise limit theorem for a class of unbounded operators in $^{r}$-spaces},
     journal = {Studia Mathematica},
     volume = {178},
     year = {2007},
     pages = {49-61},
     zbl = {1116.47013},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm179-1-5}
}
Ryszard Jajte. Pointwise limit theorem for a class of unbounded operators in $^{r}$-spaces. Studia Mathematica, Tome 178 (2007) pp. 49-61. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm179-1-5/