Given 0 < p,q < ∞ and any sequence z = zₙ in the unit disc , we define an operator from functions on to sequences by . Necessary and sufficient conditions on zₙ are given such that maps the Hardy space boundedly into the sequence space . A corresponding result for Bergman spaces is also stated.
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-sm179-1-1,
author = {Martin Smith},
title = {Bounded evaluation operators from $H^{p}$ into $l^{q}$
},
journal = {Studia Mathematica},
volume = {178},
year = {2007},
pages = {1-6},
zbl = {1108.30043},
language = {en},
url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm179-1-1}
}
Martin Smith. Bounded evaluation operators from $H^{p}$ into $ℓ^{q}$
. Studia Mathematica, Tome 178 (2007) pp. 1-6. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm179-1-1/