Given 0 < p,q < ∞ and any sequence z = zₙ in the unit disc , we define an operator from functions on to sequences by . Necessary and sufficient conditions on zₙ are given such that maps the Hardy space boundedly into the sequence space . A corresponding result for Bergman spaces is also stated.
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-sm179-1-1, author = {Martin Smith}, title = {Bounded evaluation operators from $H^{p}$ into $l^{q}$ }, journal = {Studia Mathematica}, volume = {178}, year = {2007}, pages = {1-6}, zbl = {1108.30043}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm179-1-1} }
Martin Smith. Bounded evaluation operators from $H^{p}$ into $ℓ^{q}$ . Studia Mathematica, Tome 178 (2007) pp. 1-6. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm179-1-1/