An Lq(L²)-theory of the generalized Stokes resolvent system in infinite cylinders
Reinhard Farwig ; Myong-Hwan Ri
Studia Mathematica, Tome 178 (2007), p. 197-216 / Harvested from The Polish Digital Mathematics Library

Estimates of the generalized Stokes resolvent system, i.e. with prescribed divergence, in an infinite cylinder Ω = Σ × ℝ with Σn-1, a bounded domain of class C1,1, are obtained in the space Lq(;L²(Σ)), q ∈ (1,∞). As a preparation, spectral decompositions of vector-valued homogeneous Sobolev spaces are studied. The main theorem is proved using the techniques of Schauder decompositions, operator-valued multiplier functions and R-boundedness of operator families.

Publié le : 2007-01-01
EUDML-ID : urn:eudml:doc:286289
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-sm178-3-1,
     author = {Reinhard Farwig and Myong-Hwan Ri},
     title = {An $L^{q}(L$^2$)$-theory of the generalized Stokes resolvent system in infinite cylinders},
     journal = {Studia Mathematica},
     volume = {178},
     year = {2007},
     pages = {197-216},
     zbl = {1111.35034},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm178-3-1}
}
Reinhard Farwig; Myong-Hwan Ri. An $L^{q}(L²)$-theory of the generalized Stokes resolvent system in infinite cylinders. Studia Mathematica, Tome 178 (2007) pp. 197-216. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm178-3-1/