Noncommutative function theory and unique extensions
David P. Blecher ; Louis E. Labuschagne
Studia Mathematica, Tome 178 (2007), p. 177-195 / Harvested from The Polish Digital Mathematics Library

We generalize, to the setting of Arveson’s maximal subdiagonal subalgebras of finite von Neumann algebras, the Szegő Lp-distance estimate and classical theorems of F. and M. Riesz, Gleason and Whitney, and Kolmogorov. As a byproduct, this completes the noncommutative analog of the famous cycle of theorems characterizing the function algebraic generalizations of H from the 1960’s. A sample of our other results: we prove a Kaplansky density result for a large class of these algebras, and give a necessary condition for every completely contractive homomorphism on a unital subalgebra of a C*-algebra to have a unique completely positive extension.

Publié le : 2007-01-01
EUDML-ID : urn:eudml:doc:285173
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-sm178-2-4,
     author = {David P. Blecher and Louis E. Labuschagne},
     title = {Noncommutative function theory and unique extensions},
     journal = {Studia Mathematica},
     volume = {178},
     year = {2007},
     pages = {177-195},
     zbl = {1121.46048},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm178-2-4}
}
David P. Blecher; Louis E. Labuschagne. Noncommutative function theory and unique extensions. Studia Mathematica, Tome 178 (2007) pp. 177-195. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm178-2-4/