Multiple solutions to a perturbed Neumann problem
Giuseppe Cordaro
Studia Mathematica, Tome 178 (2007), p. 167-175 / Harvested from The Polish Digital Mathematics Library

We consider the perturbed Neumann problem ⎧ -Δu + α(x)u = α(x)f(u) + λg(x,u) a.e. in Ω, ⎨ ⎩ ∂u/∂ν = 0 on ∂Ω, where Ω is an open bounded set in N with boundary of class C², αL(Ω) with essinfΩα>0, f: ℝ → ℝ is a continuous function and g: Ω × ℝ → ℝ, besides being a Carathéodory function, is such that, for some p > N, sup|s|t|g(,s)|Lp(Ω) and g(,t)L(Ω) for all t ∈ ℝ. In this setting, supposing only that the set of global minima of the function 1/2ξ²-0ξf(t)dt has M ≥ 2 bounded connected components, we prove that, for all λ ∈ ℝ small enough, the above Neumann problem has at least M+integer part of M/2 distinct strong solutions in W2,p(Ω).

Publié le : 2007-01-01
EUDML-ID : urn:eudml:doc:284813
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-sm178-2-3,
     author = {Giuseppe Cordaro},
     title = {Multiple solutions to a perturbed Neumann problem},
     journal = {Studia Mathematica},
     volume = {178},
     year = {2007},
     pages = {167-175},
     zbl = {05115202},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm178-2-3}
}
Giuseppe Cordaro. Multiple solutions to a perturbed Neumann problem. Studia Mathematica, Tome 178 (2007) pp. 167-175. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm178-2-3/