We study Banach-Saks properties in symmetric spaces of measurable operators. A principal result shows that if the symmetric Banach function space E on the positive semiaxis with the Fatou property has the Banach-Saks property then so also does the non-commutative space E(ℳ,τ) of τ-measurable operators affiliated with a given semifinite von Neumann algebra (ℳ,τ).
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-sm178-2-2, author = {P. G. Dodds and T. K. Dodds and F. A. Sukochev}, title = {Banach-Saks properties in symmetric spaces of measurable operators}, journal = {Studia Mathematica}, volume = {178}, year = {2007}, pages = {125-166}, zbl = {1118.46056}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm178-2-2} }
P. G. Dodds; T. K. Dodds; F. A. Sukochev. Banach-Saks properties in symmetric spaces of measurable operators. Studia Mathematica, Tome 178 (2007) pp. 125-166. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm178-2-2/