We show that, given an n-dimensional normed space X, a sequence of independent random vectors , uniformly distributed in the unit ball of X*, with high probability forms an ε-net for this unit ball. Thus the random linear map defined by embeds X in with at most 1 + ε norm distortion. In the case X = ℓ₂ⁿ we obtain a random 1+ε-embedding into with asymptotically best possible relation between N, n, and ε.
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-sm178-1-6, author = {Y. Gordon and A. E. Litvak and A. Pajor and N. Tomczak-Jaegermann}, title = {Random e-nets and embeddings in $l^{N}\_{[?]}$ }, journal = {Studia Mathematica}, volume = {178}, year = {2007}, pages = {91-98}, zbl = {1126.46006}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm178-1-6} }
Y. Gordon; A. E. Litvak; A. Pajor; N. Tomczak-Jaegermann. Random ε-nets and embeddings in $ℓ^{N}_{∞}$ . Studia Mathematica, Tome 178 (2007) pp. 91-98. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm178-1-6/