We show that, given an n-dimensional normed space X, a sequence of independent random vectors , uniformly distributed in the unit ball of X*, with high probability forms an ε-net for this unit ball. Thus the random linear map defined by embeds X in with at most 1 + ε norm distortion. In the case X = ℓ₂ⁿ we obtain a random 1+ε-embedding into with asymptotically best possible relation between N, n, and ε.
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-sm178-1-6,
author = {Y. Gordon and A. E. Litvak and A. Pajor and N. Tomczak-Jaegermann},
title = {Random e-nets and embeddings in $l^{N}\_{[?]}$
},
journal = {Studia Mathematica},
volume = {178},
year = {2007},
pages = {91-98},
zbl = {1126.46006},
language = {en},
url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm178-1-6}
}
Y. Gordon; A. E. Litvak; A. Pajor; N. Tomczak-Jaegermann. Random ε-nets and embeddings in $ℓ^{N}_{∞}$
. Studia Mathematica, Tome 178 (2007) pp. 91-98. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm178-1-6/