We show that a bounded linear operator S on the weighted Bergman space A¹(ψ) is compact and the predual space A₀(φ) of A¹(ψ) is invariant under S* if and only if as z → ∂D, where is the normalized reproducing kernel of A¹(ψ). As an application, we give conditions for an operator in the Toeplitz algebra to be compact.
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-sm177-3-6, author = {Tao Yu}, title = {Compact operators on the weighted Bergman space A$^1$($\psi$)}, journal = {Studia Mathematica}, volume = {173}, year = {2006}, pages = {277-284}, zbl = {1122.47027}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm177-3-6} }
Tao Yu. Compact operators on the weighted Bergman space A¹(ψ). Studia Mathematica, Tome 173 (2006) pp. 277-284. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm177-3-6/