The bounded approximation property for the predual of the space of bounded holomorphic mappings
Erhan Çalışkan
Studia Mathematica, Tome 173 (2006), p. 225-233 / Harvested from The Polish Digital Mathematics Library

When U is the open unit ball of a separable Banach space E, we show that G(U), the predual of the space of bounded holomorphic mappings on U, has the bounded approximation property if and only if E has the bounded approximation property.

Publié le : 2006-01-01
EUDML-ID : urn:eudml:doc:284575
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-sm177-3-3,
     author = {Erhan \c Cal\i \c skan},
     title = {The bounded approximation property for the predual of the space of bounded holomorphic mappings},
     journal = {Studia Mathematica},
     volume = {173},
     year = {2006},
     pages = {225-233},
     zbl = {1118.46029},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm177-3-3}
}
Erhan Çalışkan. The bounded approximation property for the predual of the space of bounded holomorphic mappings. Studia Mathematica, Tome 173 (2006) pp. 225-233. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm177-3-3/