When U is the open unit ball of a separable Banach space E, we show that , the predual of the space of bounded holomorphic mappings on U, has the bounded approximation property if and only if E has the bounded approximation property.
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-sm177-3-3, author = {Erhan \c Cal\i \c skan}, title = {The bounded approximation property for the predual of the space of bounded holomorphic mappings}, journal = {Studia Mathematica}, volume = {173}, year = {2006}, pages = {225-233}, zbl = {1118.46029}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm177-3-3} }
Erhan Çalışkan. The bounded approximation property for the predual of the space of bounded holomorphic mappings. Studia Mathematica, Tome 173 (2006) pp. 225-233. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm177-3-3/