When U is the open unit ball of a separable Banach space E, we show that , the predual of the space of bounded holomorphic mappings on U, has the bounded approximation property if and only if E has the bounded approximation property.
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-sm177-3-3,
author = {Erhan \c Cal\i \c skan},
title = {The bounded approximation property for the predual of the space of bounded holomorphic mappings},
journal = {Studia Mathematica},
volume = {173},
year = {2006},
pages = {225-233},
zbl = {1118.46029},
language = {en},
url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm177-3-3}
}
Erhan Çalışkan. The bounded approximation property for the predual of the space of bounded holomorphic mappings. Studia Mathematica, Tome 173 (2006) pp. 225-233. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm177-3-3/