Let A be an arbitrary, unital and semisimple Banach algebra with nonzero socle. We investigate the relationship between the spectral rank (defined by B. Aupetit and H. Mouton) and the Drazin index for elements belonging to the socle of A. In particular, we show that the results for the finite-dimensional case can be extended to the (infinite-dimensional) socle of A.
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-sm177-3-2, author = {R. M. Brits and L. Lindeboom and H. Raubenheimer}, title = {Rank and the Drazin inverse in Banach algebras}, journal = {Studia Mathematica}, volume = {173}, year = {2006}, pages = {211-224}, zbl = {1113.46042}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm177-3-2} }
R. M. Brits; L. Lindeboom; H. Raubenheimer. Rank and the Drazin inverse in Banach algebras. Studia Mathematica, Tome 173 (2006) pp. 211-224. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm177-3-2/