We consider when certain Banach sequence algebras A on the set ℕ are approximately amenable. Some general results are obtained, and we resolve the special cases where for 1 ≤ p < ∞, showing that these algebras are not approximately amenable. The same result holds for the weighted algebras .
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-sm177-1-6, author = {H. G. Dales and R. J. Loy and Y. Zhang}, title = {Approximate amenability for Banach sequence algebras}, journal = {Studia Mathematica}, volume = {173}, year = {2006}, pages = {81-96}, zbl = {1117.46030}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm177-1-6} }
H. G. Dales; R. J. Loy; Y. Zhang. Approximate amenability for Banach sequence algebras. Studia Mathematica, Tome 173 (2006) pp. 81-96. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm177-1-6/