Approximate amenability for Banach sequence algebras
H. G. Dales ; R. J. Loy ; Y. Zhang
Studia Mathematica, Tome 173 (2006), p. 81-96 / Harvested from The Polish Digital Mathematics Library

We consider when certain Banach sequence algebras A on the set ℕ are approximately amenable. Some general results are obtained, and we resolve the special cases where A=p for 1 ≤ p < ∞, showing that these algebras are not approximately amenable. The same result holds for the weighted algebras p(ω).

Publié le : 2006-01-01
EUDML-ID : urn:eudml:doc:285132
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-sm177-1-6,
     author = {H. G. Dales and R. J. Loy and Y. Zhang},
     title = {Approximate amenability for Banach sequence algebras},
     journal = {Studia Mathematica},
     volume = {173},
     year = {2006},
     pages = {81-96},
     zbl = {1117.46030},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm177-1-6}
}
H. G. Dales; R. J. Loy; Y. Zhang. Approximate amenability for Banach sequence algebras. Studia Mathematica, Tome 173 (2006) pp. 81-96. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm177-1-6/