We prove that several results of Talagrand proved for the Pettis integral also hold for the Kurzweil-Henstock-Pettis integral. In particular the Kurzweil-Henstock-Pettis integrability can be characterized by cores of the functions and by properties of suitable operators defined by integrands.
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-sm176-2-4, author = {L. Di Piazza and K. Musia\l }, title = {Characterizations of Kurzweil-Henstock-Pettis integrable functions}, journal = {Studia Mathematica}, volume = {173}, year = {2006}, pages = {159-176}, zbl = {1118.26008}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm176-2-4} }
L. Di Piazza; K. Musiał. Characterizations of Kurzweil-Henstock-Pettis integrable functions. Studia Mathematica, Tome 173 (2006) pp. 159-176. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm176-2-4/