Let d > 0 be a positive real number and n ≥ 1 a positive integer and define the operator and its associated global maximal operator by , f ∈ (ℝⁿ), x ∈ ℝⁿ, t ∈ ℝ, , f ∈ (ℝⁿ), x ∈ ℝⁿ, where f̂ is the Fourier transform of f and (ℝⁿ) is the Schwartz class of rapidly decreasing functions. If d = 2, is the solution to the initial value problem for the free Schrödinger equation (cf. (1.3) in this paper). We prove that for radial functions f ∈ (ℝⁿ), if n ≥ 3, 0 < d ≤ 2, and p ≥ 2n/(n-2), the maximal function estimate Hs(ℝⁿ) . We also prove that for radial functions f ∈ (ℝⁿ), if n ≥ 3, n/(n-1) < d < n²/2(n-1), then the estimate holds for s > d/2 and fails for s < d/2. These results complement other estimates obtained by Heinig and Wang [7], Kenig, Ponce and Vega [8], Sjölin [9]-[13], Vega [19]-[20], Walther [21]-[23] and Wang [24].
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-sm176-2-1, author = {Sichun Wang}, title = {A radial estimate for the maximal operator associated with the free Schr\"odinger equation}, journal = {Studia Mathematica}, volume = {173}, year = {2006}, pages = {95-112}, zbl = {1106.42014}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm176-2-1} }
Sichun Wang. A radial estimate for the maximal operator associated with the free Schrödinger equation. Studia Mathematica, Tome 173 (2006) pp. 95-112. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm176-2-1/