A radial estimate for the maximal operator associated with the free Schrödinger equation
Sichun Wang
Studia Mathematica, Tome 173 (2006), p. 95-112 / Harvested from The Polish Digital Mathematics Library

Let d > 0 be a positive real number and n ≥ 1 a positive integer and define the operator Sd and its associated global maximal operator S**d by (Sdf)(x,t)=1/(2π)eix·ξeit|ξ|df̂(ξ)dξ, f ∈ (ℝⁿ), x ∈ ℝⁿ, t ∈ ℝ, (S**df)(x)=supt|1/(2π)eix·ξeit|ξ|df̂(ξ)dξ|, f ∈ (ℝⁿ), x ∈ ℝⁿ, where f̂ is the Fourier transform of f and (ℝⁿ) is the Schwartz class of rapidly decreasing functions. If d = 2, Sdf is the solution to the initial value problem for the free Schrödinger equation (cf. (1.3) in this paper). We prove that for radial functions f ∈ (ℝⁿ), if n ≥ 3, 0 < d ≤ 2, and p ≥ 2n/(n-2), the maximal function estimate (|(S**df)(x)|pdx)1/pC||f||Hs()holdsfors>n(1/2-1/p)andfailsfors<n(1/2-1/p),whereHs(ℝⁿ)istheL²-Sobolevspacewithnorm ||f||Hs()=((1+|ξ|²)s|f̂(ξ)|²dξ)1/2. We also prove that for radial functions f ∈ (ℝⁿ), if n ≥ 3, n/(n-1) < d < n²/2(n-1), then the estimate (|(S**df)(x)|2n/(n-d)dx)(n-d)/2nC||f||Hs() holds for s > d/2 and fails for s < d/2. These results complement other estimates obtained by Heinig and Wang [7], Kenig, Ponce and Vega [8], Sjölin [9]-[13], Vega [19]-[20], Walther [21]-[23] and Wang [24].

Publié le : 2006-01-01
EUDML-ID : urn:eudml:doc:286478
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-sm176-2-1,
     author = {Sichun Wang},
     title = {A radial estimate for the maximal operator associated with the free Schr\"odinger equation},
     journal = {Studia Mathematica},
     volume = {173},
     year = {2006},
     pages = {95-112},
     zbl = {1106.42014},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm176-2-1}
}
Sichun Wang. A radial estimate for the maximal operator associated with the free Schrödinger equation. Studia Mathematica, Tome 173 (2006) pp. 95-112. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm176-2-1/