The Bohr inequality for ordinary Dirichlet series
R. Balasubramanian ; B. Calado ; H. Queffélec
Studia Mathematica, Tome 173 (2006), p. 285-304 / Harvested from The Polish Digital Mathematics Library

We extend to the setting of Dirichlet series previous results of H. Bohr for Taylor series in one variable, themselves generalized by V. I. Paulsen, G. Popescu and D. Singh or extended to several variables by L. Aizenberg, R. P. Boas and D. Khavinson. We show in particular that, if f(s)=n=1an-s with ||f||:=sups>0|f(s)|<, then n=1|a|n-2||f|| and even slightly better, and n=1|a|n-1/2C||f||, C being an absolute constant.

Publié le : 2006-01-01
EUDML-ID : urn:eudml:doc:286147
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-sm175-3-7,
     author = {R. Balasubramanian and B. Calado and H. Queff\'elec},
     title = {The Bohr inequality for ordinary Dirichlet series},
     journal = {Studia Mathematica},
     volume = {173},
     year = {2006},
     pages = {285-304},
     zbl = {1110.30001},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm175-3-7}
}
R. Balasubramanian; B. Calado; H. Queffélec. The Bohr inequality for ordinary Dirichlet series. Studia Mathematica, Tome 173 (2006) pp. 285-304. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm175-3-7/