On the functional equation defined by Lie's product formula
Gerd Herzog ; Christoph Schmoeger
Studia Mathematica, Tome 173 (2006), p. 271-277 / Harvested from The Polish Digital Mathematics Library

Let E be a real normed space and a complex Banach algebra with unit. We characterize the continuous solutions f: E → of the functional equation f(x+y)=limn(f(x/n)f(y/n)).

Publié le : 2006-01-01
EUDML-ID : urn:eudml:doc:284666
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-sm175-3-5,
     author = {Gerd Herzog and Christoph Schmoeger},
     title = {On the functional equation defined by Lie's product formula},
     journal = {Studia Mathematica},
     volume = {173},
     year = {2006},
     pages = {271-277},
     zbl = {1108.39022},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm175-3-5}
}
Gerd Herzog; Christoph Schmoeger. On the functional equation defined by Lie's product formula. Studia Mathematica, Tome 173 (2006) pp. 271-277. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm175-3-5/