Algebrability of the set of non-convergent Fourier series
Richard M. Aron ; David Pérez-García ; Juan B. Seoane-Sepúlveda
Studia Mathematica, Tome 173 (2006), p. 83-90 / Harvested from The Polish Digital Mathematics Library

We show that, given a set E ⊂ 𝕋 of measure zero, the set of continuous functions whose Fourier series expansion is divergent at any point t ∈ E is dense-algebrable, i.e. there exists an infinite-dimensional, infinitely generated dense subalgebra of 𝓒(𝕋) every non-zero element of which has a Fourier series expansion divergent in E.

Publié le : 2006-01-01
EUDML-ID : urn:eudml:doc:284956
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-sm175-1-5,
     author = {Richard M. Aron and David P\'erez-Garc\'\i a and Juan B. Seoane-Sep\'ulveda},
     title = {Algebrability of the set of non-convergent Fourier series},
     journal = {Studia Mathematica},
     volume = {173},
     year = {2006},
     pages = {83-90},
     zbl = {1102.42001},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm175-1-5}
}
Richard M. Aron; David Pérez-García; Juan B. Seoane-Sepúlveda. Algebrability of the set of non-convergent Fourier series. Studia Mathematica, Tome 173 (2006) pp. 83-90. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm175-1-5/