We show that, given a set E ⊂ 𝕋 of measure zero, the set of continuous functions whose Fourier series expansion is divergent at any point t ∈ E is dense-algebrable, i.e. there exists an infinite-dimensional, infinitely generated dense subalgebra of 𝓒(𝕋) every non-zero element of which has a Fourier series expansion divergent in E.
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-sm175-1-5, author = {Richard M. Aron and David P\'erez-Garc\'\i a and Juan B. Seoane-Sep\'ulveda}, title = {Algebrability of the set of non-convergent Fourier series}, journal = {Studia Mathematica}, volume = {173}, year = {2006}, pages = {83-90}, zbl = {1102.42001}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm175-1-5} }
Richard M. Aron; David Pérez-García; Juan B. Seoane-Sepúlveda. Algebrability of the set of non-convergent Fourier series. Studia Mathematica, Tome 173 (2006) pp. 83-90. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm175-1-5/