Linear maps preserving elements annihilated by the polynomial XY-YX
Jianlian Cui ; Jinchuan Hou
Studia Mathematica, Tome 173 (2006), p. 183-199 / Harvested from The Polish Digital Mathematics Library

Let H and K be complex complete indefinite inner product spaces, and ℬ(H,K) (ℬ(H) if K = H) the set of all bounded linear operators from H into K. For every T ∈ ℬ(H,K), denote by T the indefinite conjugate of T. Suppose that Φ: ℬ(H) → ℬ(K) is a bijective linear map. We prove that Φ satisfies Φ(A)Φ(B)=Φ(B)Φ(A) for all A, B ∈ ℬ(H) with AB=BA if and only if there exist a nonzero real number c and a generalized indefinite unitary operator U ∈ ℬ(H,K) such that Φ(A)=cUAU for all A ∈ ℬ(H).

Publié le : 2006-01-01
EUDML-ID : urn:eudml:doc:284911
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-sm174-2-5,
     author = {Jianlian Cui and Jinchuan Hou},
     title = {Linear maps preserving elements annihilated by the polynomial $XY-YX^{\dag }$
            },
     journal = {Studia Mathematica},
     volume = {173},
     year = {2006},
     pages = {183-199},
     zbl = {1091.47030},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm174-2-5}
}
Jianlian Cui; Jinchuan Hou. Linear maps preserving elements annihilated by the polynomial $XY-YX^{†}$
            . Studia Mathematica, Tome 173 (2006) pp. 183-199. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm174-2-5/