Stability of infinite ranges and kernels
K.-H. Förster ; V. Müller
Studia Mathematica, Tome 173 (2006), p. 61-73 / Harvested from The Polish Digital Mathematics Library

Let A(·) be a regular function defined on a connected metric space G whose values are mutually commuting essentially Kato operators in a Banach space. Then the spaces R(A(z)) and N(A(z))¯ do not depend on z ∈ G. This generalizes results of B. Aupetit and J. Zemánek.

Publié le : 2006-01-01
EUDML-ID : urn:eudml:doc:284481
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-sm174-1-5,
     author = {K.-H. F\"orster and V. M\"uller},
     title = {Stability of infinite ranges and kernels},
     journal = {Studia Mathematica},
     volume = {173},
     year = {2006},
     pages = {61-73},
     zbl = {1093.47013},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm174-1-5}
}
K.-H. Förster; V. Müller. Stability of infinite ranges and kernels. Studia Mathematica, Tome 173 (2006) pp. 61-73. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm174-1-5/