Quasispectra of solvable Lie algebra homomorphisms into Banach algebras
Anar Dosiev
Studia Mathematica, Tome 173 (2006), p. 13-27 / Harvested from The Polish Digital Mathematics Library

We propose a noncommutative holomorphic functional calculus on absolutely convex domains for a Banach algebra homomorphism π of a finite-dimensional solvable Lie algebra 𝔤 in terms of quasispectra σ(π). In particular, we prove that the joint spectral radius of a compact subset in a solvable operator Lie subalgebra coincides with the geometric spectral radius with respect to a quasispectrum.

Publié le : 2006-01-01
EUDML-ID : urn:eudml:doc:284574
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-sm174-1-2,
     author = {Anar Dosiev},
     title = {Quasispectra of solvable Lie algebra homomorphisms into Banach algebras},
     journal = {Studia Mathematica},
     volume = {173},
     year = {2006},
     pages = {13-27},
     zbl = {1100.47015},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm174-1-2}
}
Anar Dosiev. Quasispectra of solvable Lie algebra homomorphisms into Banach algebras. Studia Mathematica, Tome 173 (2006) pp. 13-27. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm174-1-2/