We consider elementary operators , acting on a unital Banach algebra, where and are separately commuting families of generalized scalar elements. We give an ascent estimate and a lower bound estimate for such an operator. Additionally, we give a weak variant of the Fuglede-Putnam theorem for an elementary operator with strongly commuting families and , i.e. (), where all and ( and ) commute. The main tool is an L¹ estimate of the Fourier transform of a certain class of functions on .
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-sm173-2-3,
author = {Milo\v s Arsenovi\'c and Dragoljub Ke\v cki\'c},
title = {Elementary operators on Banach algebras and Fourier transform},
journal = {Studia Mathematica},
volume = {173},
year = {2006},
pages = {149-166},
zbl = {1094.47038},
language = {en},
url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm173-2-3}
}
Miloš Arsenović; Dragoljub Kečkić. Elementary operators on Banach algebras and Fourier transform. Studia Mathematica, Tome 173 (2006) pp. 149-166. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm173-2-3/