We consider elementary operators , acting on a unital Banach algebra, where and are separately commuting families of generalized scalar elements. We give an ascent estimate and a lower bound estimate for such an operator. Additionally, we give a weak variant of the Fuglede-Putnam theorem for an elementary operator with strongly commuting families and , i.e. (), where all and ( and ) commute. The main tool is an L¹ estimate of the Fourier transform of a certain class of functions on .
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-sm173-2-3, author = {Milo\v s Arsenovi\'c and Dragoljub Ke\v cki\'c}, title = {Elementary operators on Banach algebras and Fourier transform}, journal = {Studia Mathematica}, volume = {173}, year = {2006}, pages = {149-166}, zbl = {1094.47038}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm173-2-3} }
Miloš Arsenović; Dragoljub Kečkić. Elementary operators on Banach algebras and Fourier transform. Studia Mathematica, Tome 173 (2006) pp. 149-166. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm173-2-3/