Approximation of the Euclidean ball by polytopes
Monika Ludwig ; Carsten Schütt ; Elisabeth Werner
Studia Mathematica, Tome 173 (2006), p. 1-18 / Harvested from The Polish Digital Mathematics Library

There is a constant c such that for every n ∈ ℕ, there is an Nₙ so that for every N≥ Nₙ there is a polytope P in ℝⁿ with N vertices and vol(BP)cvol(B)N-2/(n-1) where B₂ⁿ denotes the Euclidean unit ball of dimension n.

Publié le : 2006-01-01
EUDML-ID : urn:eudml:doc:285244
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-sm173-1-1,
     author = {Monika Ludwig and Carsten Sch\"utt and Elisabeth Werner},
     title = {Approximation of the Euclidean ball by polytopes},
     journal = {Studia Mathematica},
     volume = {173},
     year = {2006},
     pages = {1-18},
     zbl = {1100.52001},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm173-1-1}
}
Monika Ludwig; Carsten Schütt; Elisabeth Werner. Approximation of the Euclidean ball by polytopes. Studia Mathematica, Tome 173 (2006) pp. 1-18. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm173-1-1/