There is a constant c such that for every n ∈ ℕ, there is an Nₙ so that for every N≥ Nₙ there is a polytope P in ℝⁿ with N vertices and where B₂ⁿ denotes the Euclidean unit ball of dimension n.
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-sm173-1-1, author = {Monika Ludwig and Carsten Sch\"utt and Elisabeth Werner}, title = {Approximation of the Euclidean ball by polytopes}, journal = {Studia Mathematica}, volume = {173}, year = {2006}, pages = {1-18}, zbl = {1100.52001}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm173-1-1} }
Monika Ludwig; Carsten Schütt; Elisabeth Werner. Approximation of the Euclidean ball by polytopes. Studia Mathematica, Tome 173 (2006) pp. 1-18. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm173-1-1/