Let (X,||·||) be a separable real Banach space. Let f be a real-valued strongly α(·)-paraconvex function defined on an open convex subset Ω ⊂ X, i.e. such that . Then there is a dense -set such that f is Gateaux differentiable at every point of .
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-sm172-3-3, author = {S. Rolewicz}, title = {An extension of Mazur's theorem on Gateaux differentiability to the class of strongly $\alpha$ ($\cdot$)-paraconvex functions}, journal = {Studia Mathematica}, volume = {173}, year = {2006}, pages = {243-248}, zbl = {1106.46026}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm172-3-3} }
S. Rolewicz. An extension of Mazur's theorem on Gateaux differentiability to the class of strongly α (·)-paraconvex functions. Studia Mathematica, Tome 173 (2006) pp. 243-248. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm172-3-3/