An extension of Mazur's theorem on Gateaux differentiability to the class of strongly α (·)-paraconvex functions
S. Rolewicz
Studia Mathematica, Tome 173 (2006), p. 243-248 / Harvested from The Polish Digital Mathematics Library

Let (X,||·||) be a separable real Banach space. Let f be a real-valued strongly α(·)-paraconvex function defined on an open convex subset Ω ⊂ X, i.e. such that f(tx+(1-t)y)tf(x)+(1-t)f(y)+min[t,(1-t)]α(||x-y||). Then there is a dense Gδ-set AGΩ such that f is Gateaux differentiable at every point of AG.

Publié le : 2006-01-01
EUDML-ID : urn:eudml:doc:285160
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-sm172-3-3,
     author = {S. Rolewicz},
     title = {An extension of Mazur's theorem on Gateaux differentiability to the class of strongly $\alpha$ ($\cdot$)-paraconvex functions},
     journal = {Studia Mathematica},
     volume = {173},
     year = {2006},
     pages = {243-248},
     zbl = {1106.46026},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm172-3-3}
}
S. Rolewicz. An extension of Mazur's theorem on Gateaux differentiability to the class of strongly α (·)-paraconvex functions. Studia Mathematica, Tome 173 (2006) pp. 243-248. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm172-3-3/