Let X be an arbitrary set, and γ: X × X → ℝ any function. Let Φ be a family of real-valued functions defined on X. Let be a cyclic -monotone multifunction with non-empty values. It is shown that the following generalization of the Rockafellar theorem holds. There is a function f: X → ℝ such that Γ is contained in the -subdifferential of f, .
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-sm172-2-6, author = {S. Rolewicz}, title = {On the Rockafellar theorem for $$\Phi$^{$\gamma$($\cdot$,$\cdot$)}$-monotone multifunctions}, journal = {Studia Mathematica}, volume = {173}, year = {2006}, pages = {197-202}, zbl = {1099.46050}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm172-2-6} }
S. Rolewicz. On the Rockafellar theorem for $Φ^{γ(·,·)}$-monotone multifunctions. Studia Mathematica, Tome 173 (2006) pp. 197-202. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm172-2-6/