We prove an analogue of Y. Meyer's wavelet characterization of the Hardy space H¹(ℝⁿ) for the space H¹(ℝⁿ,X) of X-valued functions. Here X is a Banach space with the UMD property. The proof uses results of T. Figiel on generalized Calderón-Zygmund operators on Bochner spaces and some new local estimates.
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-sm172-2-2,
author = {Tuomas Hyt\"onen},
title = {Vector-valued wavelets and the Hardy space H1(Rn,X)},
journal = {Studia Mathematica},
volume = {173},
year = {2006},
pages = {125-147},
zbl = {1093.42025},
language = {en},
url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm172-2-2}
}
Tuomas Hytönen. Vector-valued wavelets and the Hardy space H¹(ℝⁿ,X). Studia Mathematica, Tome 173 (2006) pp. 125-147. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm172-2-2/