We investigate the existence of higher order ℓ¹-spreading models in subspaces of mixed Tsirelson spaces. For instance, we show that the following conditions are equivalent for the mixed Tsirelson space : (1) Every block subspace of X contains an -spreading model, (2) The Bourgain ℓ¹-index for any block subspace Y of X, (3) and every block subspace Y of X contains a block sequence equivalent to a subsequence of the unit vector basis of X. Moreover, if one (and hence all) of these conditions holds, then X is arbitrarily distortable.
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-sm172-1-3, author = {Denny H. Leung and Wee-Kee Tang}, title = {l1-Spreading models in subspaces of mixed Tsirelson spaces}, journal = {Studia Mathematica}, volume = {173}, year = {2006}, pages = {47-68}, zbl = {1101.46004}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm172-1-3} }
Denny H. Leung; Wee-Kee Tang. ℓ¹-Spreading models in subspaces of mixed Tsirelson spaces. Studia Mathematica, Tome 173 (2006) pp. 47-68. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm172-1-3/