ℓ¹-Spreading models in subspaces of mixed Tsirelson spaces
Denny H. Leung ; Wee-Kee Tang
Studia Mathematica, Tome 173 (2006), p. 47-68 / Harvested from The Polish Digital Mathematics Library

We investigate the existence of higher order ℓ¹-spreading models in subspaces of mixed Tsirelson spaces. For instance, we show that the following conditions are equivalent for the mixed Tsirelson space X=T[(θ,)n=1]: (1) Every block subspace of X contains an ¹-ω-spreading model, (2) The Bourgain ℓ¹-index Ib(Y)=I(Y)>ωω for any block subspace Y of X, (3) limlimsupθm+n/θ>0 and every block subspace Y of X contains a block sequence equivalent to a subsequence of the unit vector basis of X. Moreover, if one (and hence all) of these conditions holds, then X is arbitrarily distortable.

Publié le : 2006-01-01
EUDML-ID : urn:eudml:doc:284774
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-sm172-1-3,
     author = {Denny H. Leung and Wee-Kee Tang},
     title = {l1-Spreading models in subspaces of mixed Tsirelson spaces},
     journal = {Studia Mathematica},
     volume = {173},
     year = {2006},
     pages = {47-68},
     zbl = {1101.46004},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm172-1-3}
}
Denny H. Leung; Wee-Kee Tang. ℓ¹-Spreading models in subspaces of mixed Tsirelson spaces. Studia Mathematica, Tome 173 (2006) pp. 47-68. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm172-1-3/