For an injective map τ acting on the dyadic subintervals of the unit interval [0,1) we define the rearrangement operator , 0 < s < 2, to be the linear extension of the map , where denotes the -normalized Haar function supported on the dyadic interval I. We prove the following extrapolation result: If there exists at least one 0 < s₀ < 2 such that is bounded on , then for all 0 < s < 2 the operator is bounded on .
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-sm171-2-5, author = {Stefan Geiss and Paul F. X. M\"uller and Veronika Pillwein}, title = {A remark on extrapolation of rearrangement operators on dyadic $H^{s}$, 0 < s $\leq$ 1}, journal = {Studia Mathematica}, volume = {166}, year = {2005}, pages = {196-205}, zbl = {1092.46014}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm171-2-5} }
Stefan Geiss; Paul F. X. Müller; Veronika Pillwein. A remark on extrapolation of rearrangement operators on dyadic $H^{s}$, 0 < s ≤ 1. Studia Mathematica, Tome 166 (2005) pp. 196-205. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm171-2-5/