A remark on extrapolation of rearrangement operators on dyadic Hs, 0 < s ≤ 1
Stefan Geiss ; Paul F. X. Müller ; Veronika Pillwein
Studia Mathematica, Tome 166 (2005), p. 196-205 / Harvested from The Polish Digital Mathematics Library

For an injective map τ acting on the dyadic subintervals of the unit interval [0,1) we define the rearrangement operator Ts, 0 < s < 2, to be the linear extension of the map (hI)/(|I|1/s)(hτ(I))(|τ(I)|1/s), where hI denotes the L-normalized Haar function supported on the dyadic interval I. We prove the following extrapolation result: If there exists at least one 0 < s₀ < 2 such that Ts is bounded on Hs, then for all 0 < s < 2 the operator Ts is bounded on Hs.

Publié le : 2005-01-01
EUDML-ID : urn:eudml:doc:286642
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-sm171-2-5,
     author = {Stefan Geiss and Paul F. X. M\"uller and Veronika Pillwein},
     title = {A remark on extrapolation of rearrangement operators on dyadic $H^{s}$, 0 < s $\leq$ 1},
     journal = {Studia Mathematica},
     volume = {166},
     year = {2005},
     pages = {196-205},
     zbl = {1092.46014},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm171-2-5}
}
Stefan Geiss; Paul F. X. Müller; Veronika Pillwein. A remark on extrapolation of rearrangement operators on dyadic $H^{s}$, 0 < s ≤ 1. Studia Mathematica, Tome 166 (2005) pp. 196-205. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm171-2-5/