For a holomorphic function ψ defined on a sector we give a condition implying the identity where A is a sectorial operator on a Banach space X. This yields all common descriptions of the real interpolation spaces for sectorial operators and allows easy proofs of the moment inequalities and reiteration results for fractional powers.
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-sm171-2-4, author = {Markus Haase}, title = {A functional calculus description of real interpolation spaces for sectorial operators}, journal = {Studia Mathematica}, volume = {166}, year = {2005}, pages = {177-195}, zbl = {1095.46014}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm171-2-4} }
Markus Haase. A functional calculus description of real interpolation spaces for sectorial operators. Studia Mathematica, Tome 166 (2005) pp. 177-195. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm171-2-4/