A functional calculus description of real interpolation spaces for sectorial operators
Markus Haase
Studia Mathematica, Tome 166 (2005), p. 177-195 / Harvested from The Polish Digital Mathematics Library

For a holomorphic function ψ defined on a sector we give a condition implying the identity (X,(Aα))θ,p=xX|t-θReαψ(tA)Lp((0,);X) where A is a sectorial operator on a Banach space X. This yields all common descriptions of the real interpolation spaces for sectorial operators and allows easy proofs of the moment inequalities and reiteration results for fractional powers.

Publié le : 2005-01-01
EUDML-ID : urn:eudml:doc:285171
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-sm171-2-4,
     author = {Markus Haase},
     title = {A functional calculus description of real interpolation spaces for sectorial operators},
     journal = {Studia Mathematica},
     volume = {166},
     year = {2005},
     pages = {177-195},
     zbl = {1095.46014},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm171-2-4}
}
Markus Haase. A functional calculus description of real interpolation spaces for sectorial operators. Studia Mathematica, Tome 166 (2005) pp. 177-195. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm171-2-4/