For a holomorphic function ψ defined on a sector we give a condition implying the identity where A is a sectorial operator on a Banach space X. This yields all common descriptions of the real interpolation spaces for sectorial operators and allows easy proofs of the moment inequalities and reiteration results for fractional powers.
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-sm171-2-4,
author = {Markus Haase},
title = {A functional calculus description of real interpolation spaces for sectorial operators},
journal = {Studia Mathematica},
volume = {166},
year = {2005},
pages = {177-195},
zbl = {1095.46014},
language = {en},
url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm171-2-4}
}
Markus Haase. A functional calculus description of real interpolation spaces for sectorial operators. Studia Mathematica, Tome 166 (2005) pp. 177-195. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm171-2-4/