We prove a conjecture of Wojtaszczyk that for 1 ≤ p < ∞, p ≠ 2, does not admit any norm one projections with dimension of the range finite and greater than 1. This implies in particular that for 1 ≤ p < ∞, p ≠ 2, does not admit a Schauder basis with constant one.
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-sm171-1-5, author = {Florence Lancien and Beata Randrianantoanina and Eric Ricard}, title = {On contractive projections in Hardy spaces}, journal = {Studia Mathematica}, volume = {166}, year = {2005}, pages = {93-102}, zbl = {1089.46019}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm171-1-5} }
Florence Lancien; Beata Randrianantoanina; Eric Ricard. On contractive projections in Hardy spaces. Studia Mathematica, Tome 166 (2005) pp. 93-102. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm171-1-5/