We prove a conjecture of Wojtaszczyk that for 1 ≤ p < ∞, p ≠ 2, does not admit any norm one projections with dimension of the range finite and greater than 1. This implies in particular that for 1 ≤ p < ∞, p ≠ 2, does not admit a Schauder basis with constant one.
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-sm171-1-5,
author = {Florence Lancien and Beata Randrianantoanina and Eric Ricard},
title = {On contractive projections in Hardy spaces},
journal = {Studia Mathematica},
volume = {166},
year = {2005},
pages = {93-102},
zbl = {1089.46019},
language = {en},
url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm171-1-5}
}
Florence Lancien; Beata Randrianantoanina; Eric Ricard. On contractive projections in Hardy spaces. Studia Mathematica, Tome 166 (2005) pp. 93-102. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm171-1-5/