We investigate the classical embedding . The sharp asymptotic behaviour as s → 1 of the operator norm of this embedding is found. In particular, our result yields a refinement of the Bourgain, Brezis and Mironescu theorem concerning an analogous problem for the Sobolev-type embedding. We also give a different, elementary proof of the latter theorem.
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-sm171-1-1,
author = {V. I. Kolyada and A. K. Lerner},
title = {On limiting embeddings of Besov spaces},
journal = {Studia Mathematica},
volume = {166},
year = {2005},
pages = {1-13},
zbl = {1090.46026},
language = {en},
url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm171-1-1}
}
V. I. Kolyada; A. K. Lerner. On limiting embeddings of Besov spaces. Studia Mathematica, Tome 166 (2005) pp. 1-13. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm171-1-1/