Subharmonicity in von Neumann algebras
Thomas Ransford ; Michel Valley
Studia Mathematica, Tome 166 (2005), p. 219-226 / Harvested from The Polish Digital Mathematics Library

Let ℳ be a von Neumann algebra with unit 1. Let τ be a faithful, normal, semifinite trace on ℳ. Given x ∈ ℳ, denote by μt(x)t0 the generalized s-numbers of x, defined by μt(x) = inf||xe||: e is a projection in ℳ i with τ(1-e) ≤ t (t ≥ 0). We prove that, if D is a complex domain and f:D → ℳ is a holomorphic function, then, for each t ≥ 0, λ0tlogμs(f(λ))ds is a subharmonic function on D. This generalizes earlier subharmonicity results of White and Aupetit on the singular values of matrices.

Publié le : 2005-01-01
EUDML-ID : urn:eudml:doc:284793
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-sm170-3-1,
     author = {Thomas Ransford and Michel Valley},
     title = {Subharmonicity in von Neumann algebras},
     journal = {Studia Mathematica},
     volume = {166},
     year = {2005},
     pages = {219-226},
     zbl = {1095.46035},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm170-3-1}
}
Thomas Ransford; Michel Valley. Subharmonicity in von Neumann algebras. Studia Mathematica, Tome 166 (2005) pp. 219-226. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm170-3-1/