Let ℳ be a von Neumann algebra with unit . Let τ be a faithful, normal, semifinite trace on ℳ. Given x ∈ ℳ, denote by the generalized s-numbers of x, defined by = inf||xe||: e is a projection in ℳ i with ≤ t (t ≥ 0). We prove that, if D is a complex domain and f:D → ℳ is a holomorphic function, then, for each t ≥ 0, is a subharmonic function on D. This generalizes earlier subharmonicity results of White and Aupetit on the singular values of matrices.
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-sm170-3-1,
author = {Thomas Ransford and Michel Valley},
title = {Subharmonicity in von Neumann algebras},
journal = {Studia Mathematica},
volume = {166},
year = {2005},
pages = {219-226},
zbl = {1095.46035},
language = {en},
url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm170-3-1}
}
Thomas Ransford; Michel Valley. Subharmonicity in von Neumann algebras. Studia Mathematica, Tome 166 (2005) pp. 219-226. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm170-3-1/