We investigate various kinds of bases in infinite-dimensional Banach spaces. In particular, we consider the complexity of Hamel bases in separable and non-separable Banach spaces and show that in a separable Banach space a Hamel basis cannot be analytic, whereas there are non-separable Hilbert spaces which have a discrete and closed Hamel basis. Further we investigate the existence of certain complete minimal systems in as well as in separable Banach spaces.
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-sm170-2-3, author = {Tomek Bartoszy\'nski and Mirna D\v zamonja and Lorenz Halbeisen and Eva Murtinov\'a and Anatolij Plichko}, title = {On bases in Banach spaces}, journal = {Studia Mathematica}, volume = {166}, year = {2005}, pages = {147-171}, zbl = {1093.46012}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm170-2-3} }
Tomek Bartoszyński; Mirna Džamonja; Lorenz Halbeisen; Eva Murtinová; Anatolij Plichko. On bases in Banach spaces. Studia Mathematica, Tome 166 (2005) pp. 147-171. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm170-2-3/