The polynomial functions on a projective space over a field = ℝ, ℂ or ℍ come from the corresponding sphere via the Hopf fibration. The main theorem states that every polynomial function ϕ(x) of degree d is a linear combination of “elementary” functions .
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-sm170-1-4, author = {Yu. I. Lyubich and O. A. Shatalova}, title = {Polynomial functions on the classical projective spaces}, journal = {Studia Mathematica}, volume = {166}, year = {2005}, pages = {77-87}, zbl = {1081.46012}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm170-1-4} }
Yu. I. Lyubich; O. A. Shatalova. Polynomial functions on the classical projective spaces. Studia Mathematica, Tome 166 (2005) pp. 77-87. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm170-1-4/