Lie triple ideals and Lie triple epimorphisms on Jordan and Jordan-Banach algebras
M. Brešar ; M. Cabrera ; M. Fošner ; A. R. Villena
Studia Mathematica, Tome 166 (2005), p. 207-228 / Harvested from The Polish Digital Mathematics Library

A linear subspace M of a Jordan algebra J is said to be a Lie triple ideal of J if [M,J,J] ⊆ M, where [·,·,·] denotes the associator. We show that every Lie triple ideal M of a nondegenerate Jordan algebra J is either contained in the center of J or contains the nonzero Lie triple ideal [U,J,J], where U is the ideal of J generated by [M,M,M]. Let H be a Jordan algebra, let J be a prime nondegenerate Jordan algebra with extended centroid C and unital central closure Ĵ, and let Φ: H → J be a Lie triple epimorphism (i.e. a linear surjection preserving associators). Assume that deg(J) ≥ 12. Then we show that there exist a homomorphism Ψ: H → Ĵ and a linear map τ: H → C satisfying τ([H,H,H]) = 0 such that either Φ = Ψ + τ or Φ = -Ψ + τ. Using the preceding results we show that the separating space of a Lie triple epimorphism between Jordan-Banach algebras H and J lies in the center modulo the radical of J.

Publié le : 2005-01-01
EUDML-ID : urn:eudml:doc:286608
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-sm169-3-1,
     author = {M. Bre\v sar and M. Cabrera and M. Fo\v sner and A. R. Villena},
     title = {Lie triple ideals and Lie triple epimorphisms on Jordan and Jordan-Banach algebras},
     journal = {Studia Mathematica},
     volume = {166},
     year = {2005},
     pages = {207-228},
     zbl = {1154.17307},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm169-3-1}
}
M. Brešar; M. Cabrera; M. Fošner; A. R. Villena. Lie triple ideals and Lie triple epimorphisms on Jordan and Jordan-Banach algebras. Studia Mathematica, Tome 166 (2005) pp. 207-228. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm169-3-1/