On the ψ₂-behaviour of linear functionals on isotropic convex bodies
G. Paouris
Studia Mathematica, Tome 166 (2005), p. 285-299 / Harvested from The Polish Digital Mathematics Library

The slicing problem can be reduced to the study of isotropic convex bodies K with diam(K)cnLK, where LK is the isotropic constant. We study the ψ₂-behaviour of linear functionals on this class of bodies. It is proved that ||·,θ||ψCLK for all θ in a subset U of Sn-1 with measure σ(U) ≥ 1 - exp(-c√n). However, there exist isotropic convex bodies K with uniformly bounded geometric distance from the Euclidean ball, such that maxθSn-1||·,θ||ψcnLK. In a different direction, we show that good average ψ₂-behaviour of linear functionals on an isotropic convex body implies very strong dimension-dependent concentration of volume inside a ball of radius rnLK.

Publié le : 2005-01-01
EUDML-ID : urn:eudml:doc:285151
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-sm168-3-7,
     author = {G. Paouris},
     title = {On the ps2-behaviour of linear functionals on isotropic convex bodies},
     journal = {Studia Mathematica},
     volume = {166},
     year = {2005},
     pages = {285-299},
     zbl = {1078.52501},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm168-3-7}
}
G. Paouris. On the ψ₂-behaviour of linear functionals on isotropic convex bodies. Studia Mathematica, Tome 166 (2005) pp. 285-299. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm168-3-7/