Uniqueness of minimal projections onto two-dimensional subspaces
Boris Shekhtman ; Lesław Skrzypek
Studia Mathematica, Tome 166 (2005), p. 273-284 / Harvested from The Polish Digital Mathematics Library

We prove that minimal projections from Lp (1 < p < ∞) onto any two-dimensional subspace are unique. This result complements the theorems of W. Odyniec ([OL, Theorem I.1.3], [O3]). We also investigate the minimal number of norming points for such projections.

Publié le : 2005-01-01
EUDML-ID : urn:eudml:doc:285071
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-sm168-3-6,
     author = {Boris Shekhtman and Les\l aw Skrzypek},
     title = {Uniqueness of minimal projections onto two-dimensional subspaces},
     journal = {Studia Mathematica},
     volume = {166},
     year = {2005},
     pages = {273-284},
     zbl = {1073.41029},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm168-3-6}
}
Boris Shekhtman; Lesław Skrzypek. Uniqueness of minimal projections onto two-dimensional subspaces. Studia Mathematica, Tome 166 (2005) pp. 273-284. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm168-3-6/