We prove that minimal projections from (1 < p < ∞) onto any two-dimensional subspace are unique. This result complements the theorems of W. Odyniec ([OL, Theorem I.1.3], [O3]). We also investigate the minimal number of norming points for such projections.
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-sm168-3-6, author = {Boris Shekhtman and Les\l aw Skrzypek}, title = {Uniqueness of minimal projections onto two-dimensional subspaces}, journal = {Studia Mathematica}, volume = {166}, year = {2005}, pages = {273-284}, zbl = {1073.41029}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm168-3-6} }
Boris Shekhtman; Lesław Skrzypek. Uniqueness of minimal projections onto two-dimensional subspaces. Studia Mathematica, Tome 166 (2005) pp. 273-284. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm168-3-6/