Differentiability from the representation formula and the Sobolev-Poincaré inequality
Valentino Magnani
Studia Mathematica, Tome 166 (2005), p. 251-272 / Harvested from The Polish Digital Mathematics Library

In the geometries of stratified groups, we provide differentiability theorems for both functions of bounded variation and Sobolev functions. Proofs are based on a systematic application of the Sobolev-Poincaré inequality and the so-called representation formula.

Publié le : 2005-01-01
EUDML-ID : urn:eudml:doc:285260
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-sm168-3-5,
     author = {Valentino Magnani},
     title = {Differentiability from the representation formula and the Sobolev-Poincar\'e inequality},
     journal = {Studia Mathematica},
     volume = {166},
     year = {2005},
     pages = {251-272},
     zbl = {1097.26013},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm168-3-5}
}
Valentino Magnani. Differentiability from the representation formula and the Sobolev-Poincaré inequality. Studia Mathematica, Tome 166 (2005) pp. 251-272. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm168-3-5/