On the number of non-isomorphic subspaces of a Banach space
Valentin Ferenczi ; Christian Rosendal
Studia Mathematica, Tome 166 (2005), p. 203-216 / Harvested from The Polish Digital Mathematics Library

We study the number of non-isomorphic subspaces of a given Banach space. Our main result is the following. Let be a Banach space with an unconditional basis (ei)i; then either there exists a perfect set P of infinite subsets of ℕ such that for any two distinct A,B ∈ P, [ei]iA[ei]iB, or for a residual set of infinite subsets A of ℕ, [ei]iA is isomorphic to , and in that case, is isomorphic to its square, to its hyperplanes, uniformly isomorphic to [ei]iD for any D ⊂ ℕ, and isomorphic to a denumerable Schauder decomposition into uniformly isomorphic copies of itself.

Publié le : 2005-01-01
EUDML-ID : urn:eudml:doc:285362
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-sm168-3-2,
     author = {Valentin Ferenczi and Christian Rosendal},
     title = {On the number of non-isomorphic subspaces of a Banach space},
     journal = {Studia Mathematica},
     volume = {166},
     year = {2005},
     pages = {203-216},
     zbl = {1082.46008},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm168-3-2}
}
Valentin Ferenczi; Christian Rosendal. On the number of non-isomorphic subspaces of a Banach space. Studia Mathematica, Tome 166 (2005) pp. 203-216. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm168-3-2/