Anisotropic Lipschitz spaces are considered. For these spaces we obtain sharp embeddings in Besov and Lorentz spaces. The methods used are based on estimates of iterative rearrangements. We find a unified approach that arises from the estimation of functions defined as minimum of a given system of functions. The case of L¹-norm is also covered.
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-sm168-1-4, author = {F. J. P\'erez}, title = {Embedding theorems for anisotropic Lipschitz spaces}, journal = {Studia Mathematica}, volume = {166}, year = {2005}, pages = {51-72}, zbl = {1079.46025}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm168-1-4} }
F. J. Pérez. Embedding theorems for anisotropic Lipschitz spaces. Studia Mathematica, Tome 166 (2005) pp. 51-72. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm168-1-4/